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We measured the transmission spectra of asymmetrically shaped three-dimensional (3D) mi-
crowave cavities to determine resonant frequencies. We used the Balian-Bloch formula [R. Balian
and C. Bloch, Ann. Phys. (N.Y.) 84, 559 (1974); 64, 271 (1971), Eq. (I.1)] for electromagnetic waves
in a three-dimensional cavity with smooth walls to check that very few resonances were missed up to
14 GHz. After normalizing them with the local mean eigenmode spacing, we unfolded the resonance
spectra and found that the distribution of electromagnetic eigenmodes of the irregular 3D microwave
cavities displays a statistical behavior characteristic for classically chaotic quantum systems, viz.,
the Wigner distribution. We found that this result did not depend on the exact irregular shape of

the 3D cavity, suggesting that it is universal.
PACS number(s): 41.20.Bt, 84.40.Cb, 05.45.+b

I. INTRODUCTION

The statistical properties of bounded quantum systems
have been intensively investigated theoretically and ex-
perimentally [1], especially for those whose classical coun-
terparts have two degrees of freedom, such as planar bil-
lards. The correspondence between the eigenvalue statis-
tics of a quantum system and the properties of its classi-
cal counterpart was found. When the classical counter-
part is integrable, a Poisson distribution (level clustering)
of the eigenvalue spacings is expected, whereas for nonin-
tegrable (classically chaotic) counterparts, a Wigner dis-
tribution (level repulsion) characteristic of the Gaussian
orthogonal ensemble (GOE) is expected.

In random matrix theories, several different Gaussian
ensembles were studied [2]. The most important are the
GOE, the Gaussian symplectic ensemble (GSE), and the
Gaussian unitary ensemble (GUE). The GUE is not in-
variant under time reversal, but the GOE and the GSE
are. Furthermore, the GOE (GSE) corresponds to sys-
tems with an integral (a half-integral) total angular mo-
mentum measured in units of A.

GOE statistics have been found in a number of differ-
ent physical problems, e.g., in the level spacing distribu-
tion of atomic nuclei [3], of higher acoustic eigenfrequen-
cies of small aluminum blocks [4] and of the hydrogen
atom in a strong magnetic field, i.e., the so-called diamag-

. netic Kepler problem [5-7]. Universality in the response
of hydrogen energy levels to the magnetic field in the
chaotic region was shown in [8]. Quantum phase space
behavior for nonhydrogenic atoms in magnetic fields was
studied [9]. Relations between the degree of chaos in
a classical system and the level spacing statistics of its
quantal counterpart are discussed in [1, 10, 11].

Poisson statistics in an atomic physics problem was
investigated [12]. The energy-level statistics of the dia-
magnetic lithium Rydberg spectrum in a regime of regu-
lar classical motion showed Poisson-type behavior for the
distribution of nearby levels.
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Recently, two-dimensional (2D) electromagnetic sys-
tems, particularly microwave cavities, have emerged as
a laboratory tool for studying some issues in quantum
chaos [13-16], by which we mean the properties of a
quantal system whose classical counterpart is chaotic.
Reaching the latter involves a noncommuting double
limit # — 0 and ¢ — oo [17]. Some general features
of eigenvalue spectra, such as their statistical properties,
are reasonably well understood [18]. For these 2D cavities
(assumed to be dissipationless), Maxwell’s equations and
their boundary conditions lead to a Helmholtz equation
whose solutions yield eigenfrequencies and eigenfunctions
that are equivalent to those for the 2D Schrédinger equa-
tion. Because one is able to measure both the frequen-
cies and the field distributions of 2D electromagnetic cav-
ity resonances, this analog system has been exploited for
quantum chaos studies [19].

In 3D cavities, the electromagnetic Helmholtz equa-
tion and its boundary conditions are not mathemati-
cally equivalent to the 3D Schrédinger equation (the wave
function is scalar) and its boundary conditions due to the
vector nature of the electromagnetic field. Therefore, we
do not directly investigate here an electromagnetic analog
for quantum systems. However, Balian and Bloch have
shown [20, 21] that there is a strong analogy between the
3D Laplace equation and the electromagnetic Helmholtz
equation in three dimensions. For example, the lead-
ing volume term of the density of the electromagnetic
eigenmodes (vector field) is twice that corresponding to
a scalar field, e.g., the density of the eigenvalues of the 3D
Schrédinger equation. The factor 2 is due to the two or-
thogonal, transverse polarizations of the electromagnetic
field.

Maxwell’s equations in the asymptotic limit A < =z,
where X is the wavelength and z the size of a resonant
structure, can be solved by and associated with ray prop-
agation (see, e.g., [22]). Thus the discussion of systems
associated with regular rays versus systems associated
with chaotic rays in this limit is an interesting possibility
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for 3D bound electromagnetic systems.

In general, 3D cavities are more generic than 2D cav-
ities in that the ray phase space is globally connected
(Arnold’s diffusion) for the case of near-integrable sys-
tems, whereas in 2D systems resonance layers at sep-
aratrices are isolated from each other by Kolmogorov-
Arnold-Moser (KAM) surfaces. (See, e.g., [23] for 3D
billards, generic systems, Arnold’s diffusion, and KAM
surfaces.) Quantum dynamics of 3D billards that are
stochastic in the classical ray limit was discussed in [24]
and applied to a periodically perturbed waveguide.

In this paper we present an experiment studying the
statistical properties of the electromagnetic eigenmodes
of 3D cavities. The question motivating this work is sim-
ple: Do we get the same statistical results as in 2D cav-
ities, viz., Poisson statistics for regularly shaped cavities
and GOE statistics for irregularly shaped cavities? (See
Sec. IIIC 2 for the definition of Poisson and GOE statis-
tics and Sec. II for the definition of irregularly shaped
cavities.) The answer turns out to be yes. Therefore,
we infer that a relation between solutions of the 3D
Helmholtz equation and those of the 3D Schrodinger
equation (each with appropriate boundary conditions)
exists.

- The electromagnetic eigenmodes for regularly shaped
3D cavities, e.g., parallelepiped, sphere, cylinder, ellip-
soid of revolution, etc., can be easily calculated since
the Helmholtz equation with this kind of boundary con-
ditions is separable and therefore exactly solvable. An
example for such a calculation with its result for the
nearest-neighbor spacing distribution, which is indeed
Poisson-like, is shown in the Appendix. Therefore, an
experimental approach is particularly useful for irregu-
larly shaped cavities for which numerical solutions are ex-
tremely difficult to obtain. Sophisticated software pack-
ages such as MAFIA [25] could, in principle, allow the cal-
culation of the electromagnetic eigenmodes of 3D cavities
of any shape, but we estimate that the required number
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FIG. 1. Transmitted microwave power in the frequency
range between 7 and 8 GHz. Looking carefully, one can iden-
tify 24 cavity resonances in this frequency range. If we apply
a logarithmic y scale (see Fig. 2), we can identify four more
resonances with relative amplitudes that are too small to show
up on a linear y scale.
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of mesh points needed to specify accurately the irregu-
lar boundary surfaces that interest us here would lead to
calculations requiring such an immense amount of CPU
time to get a reasonable number of eigenvalues with a
reasonable accuracy that this method does not now seem
to be a feasible alternative to the experiment. This may

change as available computers become even more power-
ful. '

II. EXPERIMENT

In the experiments we used different irregularly shaped
microwave cavities. By irregular we mean that the cav-
ity has no symmetry of rotation or reflection. Of course,
any real “symmetrical” cavity has manufacturing imper-
fections (not to mention openings for antennas or irises
that couple power in or out) that break its symmetry,
but these are usually neglected as long as they are much
smaller than the wavelength. We made our irregular 3D
cavities by soldering together the edges of thin sheets of
brass “shim stock.”

We measured cavity spectra using a transmission
method because we found it to lead to a more precise
identification of eigenmodes than the reflection method.
This superiority is substantial because sharp peaks
emerging from a negligible background are observed and
not dips in a constantly varying reflected power level.
Specifically, we used a Gigatronics Model 910/2-18 mi-
crowave synthesizer together with a Hewlett Packard
Model HP8484A power sensor and Model HP436A power
meter to measure the transmitted power. The fre-
quency could be varied in 1-MHz steps between 2 and
18.5 GHz. The microwaves were transmitted to the res-
onator through a low-loss microwave cable. Coupling to
the field inside the cavity was accomplished by small elec-
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FIG. 2. Figure 1 with logarithmic power axis. We identify
28 resonances (marked by inverse triangles). The subjective,
qualitative selection criterion was a distinctive peak struc-
ture. Peaks from dispersion shape lines, e.g., at 7.323 GHz,
7.692 GHz, and 7.772 GHz, were taken into consideration.
The small shoulder peaks that frequently show up at the
power level near the arrow at the right-hand vertical axis are
spurious and should be ignored. They were produced by the
power meter changing from a less sensitive to a more sensitive
range.
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tric dipole antennas made of copper wire. The length of
each antenna was approximately 2 mm, long enough to
get a satisfactory coupling over the whole frequency range
but short enough to make only a small perturbation.

The microwave power transmitted through the cavity
was measured as a function of frequency under computer
control, using the IEEE-488 general purpose interface
bus. Each transmission spectrum was stored on disk
for later graphical examination on the computer screen.
The resonance frequencies are easily identified from such
transmission spectra (see Figs. 1 and 2) up to the limit
of approximately 14 GHz.

The resonator quality Q is defined as Q = v/Av, where
v is a typical eigenfrequency and Av its width. As is
well known for regular cavities, the resonator @ is mode-
number dependent, but qualitatively one can speak of
a typical, “average” Q. In general, Av increases as v
increases; this, plus the quadratic increase [see Eq. (1)]
of eigenfrequency density with frequency, always makes
it difficult to resolve resonances above some critical fre-
quency (see Fig. 3). The resonator quality @ depends on
the surface conductivity of the cavity material and on the
volume of the cavity. The cavities we used had a volume
near 500 cm?® and a typical Q near 2000.

Two successive eigenfrequencies can just be resolved if
they are separated by at least their typical width Av and
have comparable amplitudes. Thus a higher resonator
quality @ allows measurements at higher frequencies,
where the density of the resonances increases rapidly.
This yields a higher total number of resonances and thus
more reliable statistics. On the other hand, higher @ val-
ues require a smaller step width of the frequency scan-
ning, which is more time consuming. We decided to mea-
sure with a step width of 1 MHz. Our upper frequency
limit had to shrink to 14 GHz to make sure that not too
many resonances were missed. In this frequency range,
we identified 466 eigenfrequencies, which led to reason-
able statistics. To do so, however, we found it important
to compare spectra obtained by using multiple coupling
locations [4] in order to ensure that an accidental occur-
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FIG. 3. Transmitted microwave power in the frequency
range between 17 and 18 GHz. Many of the resonances cannot
be determined since the eigenvalue density has become too
high for the quality factor of our cavity.
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rence of eigenfunction nodes at a particular location did
not lead to missed levels. Our experience is that three
widely spaced coupling locations are sufficient for irregu-
larly shaped 3D cavities. If an eigenfunction has a node
at one of the three antennas, it will still be detected by
a transmission measurement using the other two anten-
nas. A level will be missed only if two of the nodes of
a particular eigenfunction coincide with two of the cou-
pling antennas since then all three possible transmission
measurements between the three antennas are blocked.
The probability for this case to happen is the square of
the probability that one particular antenna will coincide
with a node. Therefore, the probability of missing a level
due to the occurrence of nodes using three coupling an-
tennas is the square of the probability of losing a level us-
ing two antennas. A comparison of our two-antenna and
three-antenna measurements shows that approximately
one in 20 resonances is lost by using two coupling an-
tennas. Therefore, we estimate that only one resonance
in approximately (20)2 = 400 would be lost due to the
position of nodes by using three coupling antennas.

A more difficult problem is the possibility of miss-
ing eigenfrequencies due to near degeneracy, i.e., miss-
ing very small spacings actually present in the eigenfre-
quency spacing distribution [15]. For example, looking
at the leftmost resonance in Fig. 1, one is tempted to ask
whether there are two eigenfrequencies under this bump.
A comparison of fits to the data using either one or two
Lorentzians does not give us a clear answer. Although

x? per degree of freedom (= X;) for a two-Lorentzian
fit to 16 data points is five times as large as for a one-
Lorentzian fit, we cannot rule out that this peak is com-
posed of two resonances. There is the possibility that an
eigenfrequency, and therefore a small spacing, was missed
here (cf. the discussion at the end of Sec. III C 3).

III. RESULTS

A. Specification of the cavity

Because we found the statistical properties of the ten
irregularly shaped cavities we investigated [26] to be
similar (i.e., the cavities show similar, Wigner-like (see
Sec. IIIC 2) eigenfrequency spacing distributions and in
particular level repulsion), only data obtained with one
particular irregular cavity will be presented. The proper-
ties of this particular cavity are volume V = (580+3) cm?
surface area A = (414 % 6) cm?.

We fabricated this cavity by soldering together plane
brass sheets that we deformed by hand before and dur-
ing the soldering process. We measured accurately the
surface area of each originally plane piece, but we must
give an uncertainty of 6 cm? in the surface area due
to the uncertainty of £1 mm in all soldering joints. We
determined the volume of the cavity by measuring the
volume of water that it could hold.

Being irregular, the exact shape of this particular cav-
ity is difficult to describe. It was soldered together out
of two plane brass sheets, which are shown in Fig. 4. A
photograph of the cavity is shown in Fig. 5. The cavity
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FIG. 4. Scale drawings of the two plane brass sheets out of
which the cavity was soldered together. Edges with the same
size were joined together. The circles represent the positions
of the coupling sites, the dashed lines show the edges.

has five surface segments that may be approximated by
surfaces of constant curvature. We estimate the surface
curvature term % Js %: occurring in the Balian-Bloch
formula (see Sec. III B) to be (0.9 +0.3) m. We obtained
this estimate by measuring the areas o; of the surface sec-
tions of approximately constant curvature and dividing
them by their estimated curvature radii R;.

B. Check of the Balian-Bloch formula
in three dimensions

Balian and Bloch [20] treated theoretically the distri-
bution of electromagnetic eigenmodes in a cavity with
perfectly conducting smooth walls. They found the fol-
lowing expression for the density of eigenmodes p5™ (k)
as a function of the wave number k:

2 [ do, 4. } ,

1
po (k) = 2 [sz -2

3 s R (1)

where V is the volume of the cavity and f s % is the
surface curvature averaged over the whole surface of the
cavity. pE™M(k)dk is the number of modes with wave num-
ber between k& and k + dk.

We compared the cumulative number of eigenfrequen-
cies or the integrated eigenfrequency density N(v) of
the experimentally determined eigenfrequency distribu-

FIG. 5.

Photograph of the cavity.

tion (also called the “staircase function,” which increases
by one at each cavity resonance) with a theoretical re-
sult obtained by integrating Eq. (1), now written as a
function of the microwave frequency v:

N(V) — 8?71-_61_/3”3 41 g %“iy + const, (2)
where ¢ is the speed of light. Only allowing the inte-
gration constant to vary, we fitted the integrated Balian-
Bloch formula (2) to the experimentally determined stair-
case function.

For the cavity described in Sec. III A, the agreement
with (2) was very good. Figure 6 shows this by comparing
the fitted curve (with and without the curvature term)
to the experimental staircase for the first 466 eigenfre-
quencies, which corresponds to the frequency range from
2 to 14 GHz.

In order to check further the agreement with the
Balian-Bloch formula (1), we fitted the function

N(y)=Av*+Bv+C

3T c

to our experimentally obtained staircase function, allow-
ing A, B, and C to vary simultaneously. The obtained
fitting parameters A and B lie within the standard devi-
ations of the coefficients of the integrated Balian-Bloch
formula (2), ST"CK;, ;“1: s %%, respectively, while
the fitting parameter C lies within the standard devia-

tion of const determined by the one-parameter fit of (2)
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FIG. 6. Comparison of the experimentally obtained stair-

case function with the theoretical Balian-Bloch formula (2)
(solid line). The dash-dotted-line shows the Balian-Bloch pre-
diction with the curvature term omitted, but with the same
integration constant used as for the solid line. The dashed
lines in the enlarged section of the picture represent the error
bars resulting from measurement errors of the volume and the
mean surface curvature of the cavity.

to the experimentally obtained staircase function.

Can we infer from the excellent agreement in Fig. 6
that we missed no eigenmodes? No, because a few small
fluctuations in the spectrum could have been misinter-
preted as eigenmodes, making up for missed eigenmodes.
As Sec. ITI C 3 explains, however, the probability for this
to occur is small enough for our purposes.

C. Nearest-neighbor spacing distribution

We used the eigenmode spectra to analyze the nearest-
neighbor spacings for short-range correlations. Such a
statistical analysis is meaningful only if the spectrum
is almost complete, i.e., few eigenfrequencies are miss-
ing. The missing of randomly chosen eigenfrequencies of
a Wigner distributed spectrum or of a Brody distributed
spectrum (Sec. IIIC2, below) will yield a distribution
with a smaller level repulsion parameter 3. In the ex-
treme case of missing randomly the majority of the eigen-
frequencies, a Poisson-like distribution will be obtained
giving wrong statistical information about the original
spectrum. Considering the results shown in Sec. III B,
there is a good reason to assume that the spectrum is
almost complete and therefore the following analysis is
meaningful.
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1. Unfolding procedure

We obtained the nearest-neighbor spacing distribution
by applying the standard unfolding procedure. From the
experimentally determined sequence of frequency eigen-
values {vo,v1,v2,...}, by taking the differences of the
nearest-neighbor eigenfrequencies and normalizing them
by the locally averaged eigenmode spacing § = (v;41—v;),
where ( ) stands for the local average in the frequency
range, we obtained the scaled spacings. To get the local
average, we divided the spacings by the eigenfrequency
density function, which was obtained in two different
ways (see Sec. IIIC3). We sorted the scaled spacings
s; 1= (Vi1 —V;)/§ so obtained according to their size. Af-
ter normalizing with the total number of measured eigen-
mode spacings, we obtained the probability distribution
P(s).

2. Brody fit

We fitted the nearest-neighbor spacing distribution to
the Brody formula [27, 28]

P;mdy(s) = asP exp(—bsP*1), 3)
a=(B+1)b, b={I(§5)}**, (4)
where s is the level spacing normalized by its local av-

erage as explained in Sec. IIIC1 and B is the so-called
level repulsion parameter. The Brody distribution with

a level repulsion parameter 3 = 0 becomes a Poisson
distribution
PPoisson(s) — exp(—s), (5)

which we would expect for classically integrable quantum
systems [29,30]. The distribution (5) describes the statis-
tics of random numbers having no correlation. Therefore,
it would represent the levels of a typical regular system.

Taking Eq. (3) with a repulsion parameter 8 = 1, we
get a Wigner distribution

pWigner(5) — Ts exp (—Esz) , (6)
2 4

which we would expect for classically chaotic, integral-

spin quantum systems having time-reversal symmetry

(GOE) [2].

The level spacing distribution for classically chaotic
quantum systems shows a behavior exhibiting level re-
pulsion, i.e., P(s — 0) — 0. The Wigner distribution
gives linear repulsion for small spacings: P(s) ~ s? with
B = 1. Studies of various chaotic systems [30-35] have
shown that their level statistics can be those of ensembles
of random matrices [2, 36]. For chaotic systems possess-
ing time reversal symmetry, the GOE is applicable [28].
It consists of symmetric matrices built of random Gaus-
sian numbers with zero mean and the variance inversely
proportional to the matrix size N. For the limit N — oo,
the GOE level spacing distribution can be approximated
well by the Wigner distribution (6) [37, 38].

Although the Brody distribution (3) has no profound
physical justification [39], it gives a statistically signifi-
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FIG. 7. Brody distribution displayed for the level repul-
sion parameter 3 from 0 to 1.

cant fit for many practical examples. When the level re-
pulsion parameter 3 of the unfolded spectrum of a given
system is between zero and one, this is usually taken to
be an indicator that the corresponding classical system
evolves in a mixed phase space of coexisting regular and
irregular (chaotic) regions. The Brody distribution fur-
nishes a smooth transition between the Poissonian and
Wigner distributions as 3 varies between zero and one
(see Fig. 7).

How can we apply all this to our 3D microwave cav-
ities? Since time reversal symmetry holds for the elec-
tromagnetic field inside our irregularly shaped cavities,
GOE statistics should be applicable. Therefore, we
strongly expect a Wigner level spacing distribution. For
a cavity possessing properties of even weak symmetry,
level degeneracies will cause departures from this.

3. Ezperimentally obtained eigenfrequency
spacing distributions

We obtained the density function applied in the un-
folding procedure in two different ways: In method I
we used the Balian-Bloch formula for the density func-
tion pfM(k) [see Eq. (1)] with the measured values of
the volume [V = (580 % 3) cm?®] and mean curvature
s %’: = 3(0.9 + 0.3) m] and in method II we fitted
a polynomial of degree 10 to the experimental curve in
Fig. 6, i.e., the cumulative number of resonances, and
used the first derivative of this polynomial as the density
function. The unfolding procedure II is totally indepen-
dent of the Balian-Bloch formula (1) and therefore serves
us as an additional consistency check of our results.

The level spacing distributions obtained with the two
methods are nearly identical; see Figs. 8 and 9, which we
obtained as follows. We fitted the Brody function (3) to
each respective eigenfrequency spacing distribution. As a
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FIG. 8. Eigenfrequency spacing distribution in which the

Balian-Bloch density function was used for unfolding the spec-
trum (method I). The best Brody fit, which is displayed as
a solid line, is the Wigner distribution (8 = 1.01 + 0.06).
Frames (a) and (b) are, respectively, for five and ten intervals
per unit average spacing.

consistency check, we did two fits for each unfolding pro-
cedure; we divided the unit eigenfrequency spacings into
five and ten intervals, respectively. The standard devia-
tion of each column height in the eigenfrequency spacing
distributions is the square root of the number of counts
represented by the respective column since we have here
a counting process and therefore the height of a column
(i.e., the number of counts) is Poisson distributed. Fit-
ting with these standard deviations yields, however, a
fit that does not represent the data well. We obtained
a better fit by applying a constant standard deviation
for each column, i.e., Gaussian statistics. For histograms
with five columns per unit spacing, we applied a standard
deviation of five counts per column, and for histograms
with ten columns per unit spacing, we applied a standard
deviation of three counts. The used constant standard
deviations for each column in the fitting procedure result
from the +1-MHz error in the determination of a clearly
visible eigenfrequency of the cavity that comes from the
discrete frequency step used in the experiment. There-
fore, the error of a spacing is +£2 MHz. Unfolding the
spectrum with these uncertainties in the eigenfrequency
spacings leads to the applied uncertainty in the number
of spacings per column in the eigenfrequency distribu-
tion function. Additional systematic errors arise because
some eigenfrequencies might have been missed or because
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FIG. 9. Eigenfrequency spacing distribution in which a
polynomial fitted to the experimental cumulative number of
resonances as a function of the frequency was used for un-
folding the spectrum (method II). The best Brody fit was
given for B = 0.97 £ 0.06 (solid line), which is very close to
the Wigner distribution (dashed line). Frames (a) and (b)
are, respectively, for five and ten intervals per unit average
spacing.

some small fluctuations in the transmitted power might
have been interpreted as eigenfrequencies. Although we
regard the influence of the systematic errors as small be-
cause we compared transmission spectra obtained with
three different coupling sites, we can neither exclude nor
quantify them precisely. However, it is obvious that the
systematic error caused by missed eigenfrequencies will
be largest for near degeneracies. This is confirmed by
a look at the eigenfrequency distribution functions. Fig-
ures 8 and 9 clearly show for small spacings a discrepancy
between the unfolded experimental distributions and the
Brody fits, which are basically Wigner distributions; the
experimental results are systematically low here.

The fitted level repulsion parameters are as follows.
For unfolding procedure I, five columns per unit mean

spacing, 8 = 1.02+0.07, Xg— = 0.88, D = 24; ten columns
per unit mean spacing, 8 = 1.01 + 0.06, %g— =0.77,D =
49. For unfolding procedure II, five columns per unit
mean spacing, § = 0.96 + 0.07, X,Di = 1.14, D = 25;
ten columns per unit mean spacing, 8 = 0.97 + 0.06,
X = 1.05, D = 50.

We believe that method I is more reliable since it uses
the Balian-Bloch formula (1) for the density of eigen-
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modes p§™(k), which is obviously experimentally verified
(see Fig. 6 and the results of the third-order fit discussed
at the end of Sec. IIIB). As motivated at the beginning
of this section, method II is just a consistency check. A
polynomial fit can always have small wiggles that do not
truly represent the basic mean average. Therefore, we
should take the level repulsion parameter 8 = 1.01£0.06
as the final result for the irregularly shaped 3D cavity
shown in Figs. 4 and 5. Because missed eigenfrequen-
cies were a more serious problem for the other nine cavi-
ties [26] we investigated, we did not obtain quantitatively
accurate results for them. Qualitatively, the results were
similar. ’

We investigated how well the nearest-neighbor spacing
distribution characteristic for the GUE fits our experi-

mentally obtained data and got a X,Di 3.6 times as high as
for the Wigner (GOE) distribution.

The question arises what influence the fact that some
small spacings were missed might have on the level repul-
sion parameter 3. Most of the missed eigenfrequencies
were missed because of near degeneracy. If an almost
degenerate eigenfrequency is missed, it will show up in
the eigenfrequency spacing distribution as a deficit in col-
umn(s) for small spacings. The adjacent spacings, how-
ever, will not be altered much since the missed spacings
are so small.

We investigated what influence the random deletion of
some eigenfrequencies of a Wigner-distributed spectrum
has on the fitted level repulsion parameter 3. We found
that B decreases monotonically with an increasing num-
ber of randomly deleted eigenfrequencies and approaches
zero, i.e., the Poisson distribution, if about 90% of the
data points are deleted. 3 already decreases considerably
if a fraction of 30% of the data points is deleted. There
is never an increase of 8 connected with the deletion of
data points. Since we found that a Wigner distribution
(i-e., 8 = 1) fits our experimental spectrum well, we may
conclude that missed eigenfrequencies were not a serious
experimental problem.

D. Spectral rigidity

The A3z(L) statistic of Dyson and Mehta [40], also
known as the spectral rigidity, is used extensively in the
literature [13, 16,41-44] to study long-range correlations
of energy spectra. The Az(L) statistic measures the spec-

tral average of the stiffness of the spectrum and is defined
by

a+L
As(o, L) = % %ig/ [N(z) — (Az — B)]%dz, (7)
As(L) = (Az(e, L))ay (8)

where N(z) is the cumulative number of eigenfrequen-
cies, i.e., the staircase function jumping by one at each
resonance, which is normalized by the local mean eigen-
frequency spacing (see Sec. IIIC1), and L is the mean
eigenfrequency spacing. The minimalization is over the
parameters A and B, i.e., Az — B represents the best
fitted straight line to N(z) fora <z < a+ L.



shown in Figs. 4 and 5. The dashed line is a theoretical GOE
prediction, whereas the dotted line is A3(L) for the Poisson
case.

For an eigenfrequency distribution following Poisson
statistics, we would expect a straight line for the spectral
rigidity [40]

o L
APoxsson L)= =2
3 ( ) 157 (9)
whereas for an eigenfrequency distribution following
GOE statistics, we would expect a curve for which there
is no analytical form but which may be asymptotically
described for large L by [40]

_ 1 w2 5
ASOE(L) =~ o~ [1n(27rL) tr-g - Z]

1
=—InL—0.0069..., (10)

where v is the Euler constant (v = 0.577...).

The spectral rigidity for our cavity is shown in Fig. 10.
In the range 0 < L < 20, the Az(L) statistic agrees very
well with the GOE prediction, for larger L values Az(L)
lies slightly above the theoretical GOE curve. This means
that up to about 20 adjacent eigenfrequencies are corre-
lated according to the GOE prediction, whereas the cor-
relation of more than 20 eigenfrequencies deviates more
significantly from this prediction.

52 STATISTICAL PROPERTIES OF THE EIGENFREQUENCY ... 1153
0.4 . IV. CONCLUSIONS
L1 The nearest-neighbor spacing distribution for the
% 0.3 4 e F eigenmodes of the investigated 3D cavities clearly shows
ey - level repulsion characteristic for classically chaotic quan-
i & tum systems and is in good agreement with the Wigner
g 977 R surmise (6) [2]. If we had a 2D cavity and therefore a
%) y = corresponding quantum mechanical system in the classi-
©) o | cal limit, we could see that almost all trajectories had
I< to be chaotic. (With “almost all” we mean here that
(a) the nonchaotic trajectories would be of measure zero.)
0.0 ; ; . ; Therefore, the corresponding quantum mechanical sys-
0 s 0 S 20 25 tem would have to be ergodic in the classical limit and
o L (in units of the locol meon spocing) we would have expected this from the irregular shape of
the 2D cavity.
0-71 From our spectra obtained with 3D cavities we cannot
Z 06 L draw this kind of conclusion. It is interesting, however, to
& = note that 3D cavities seem to be governed by the same
g o5 - e statistics as 2D cavities and follow the same “hidden”
é 0.4 1 D r statistical laws, which are determined by the particular
8 03 — shape of the cavity. There are really clear relations be-
- : tween the type of the system (whether it is “chaotic” or
14 %77 | not) and its intrinsic statistical laws, whether or not the
0.1 A (b) system has a quantum mechanical counterpart.
0.0 . . ; . , . . , ,
0O 10 20 30 40 50 60 70 80 90 100 ACKNOWLEDGMENTS
L (in units of the local mean spacing)
FIG. 10. Spectral rigidity for the irregularly shaped cavity Partial support of this work was supplied by the NSF

and by the Fulbright Commission in Germany. We would
like to thank J. Verbaarschot, N. Balazs, and R. Bliimel
for discussions, suggestions, and valuable help.

APPENDIX A: LEVEL SPACING DISTRIBUTION
FOR A REGULAR CAVITY

We calculated the first 46 959 eigenfrequencies (which
correspond to a frequency range from 0 to 121 GHz) of
a cylindrical cavity (radius R = 3.4722 cm and height d
= 4.5009 cm) made of an ideal conductor and filled with
vacuum. The TM and TE resonance frequencies of this
cavity are given by

o _ e [oh, g

mne 2wV R2? az’

m,p =0,1,2, , n=1,2,3,...
TE __ € z2, | pim?
anp —2; R2? + d2 ’

m=20,1,2,..., n,p=1,2,3,...,

where ¢ is the speed of light, z,,, is the nth root of
the mth Bessel function J,,(z), and z,,, is the nth root
of the first derivative of the mth Bessel function J/,(z).
Since the wave functions for both TM and TE modes
contain the factor exp (+ime¢), where ¢ is the angle co-
ordinate in the cylindrical system (p, ¢, z), all eigenvalues
except those labeled with m = 0 are twofold degenerate.

There is an additional degeneracy between TM and TE
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0.12 =
.
0.09 A I
> N
e 0.06 H
£
c
£ |
o |
|
0.03 ‘
0.00 l ——t +
o] 1 2 3
Eigenfrequency Spacing (in units of the local average)
FIG. 11. Eigenfrequency spacing distribution for the first

46 959 eigenfrequencies of the cylindrical cavity specified in
the text. The dashed line represents Poisson statistics.

modes because of the relation J{(z) = —Ji(z); we get
I/,:{;Ezoyn’p = V$¥1,n,p’ n,p=12,3,....

We calculated the eigenfrequency spacing distribution
and the spectral rigidity for TM and TE modes sep-
arately, as well as for mixed TM and TE modes. In
these calculations, we treated all degeneracies as single
resonances, i.e., we did not count zero spacings. The
degeneracy-pruned calculations for pure TM and TE se-
quences of resonances as well as those for mixed TM
and TE resonances showed good agreement with Poisson
statistics. The results for the mixed TM-TE treatment
are shown in Figs. 11 and 12. The nearest-neighbor spac-
ing distribution, shown in Fig. 11, is approximated very
well by the Poisson distribution. The spectral rigidity
(see Fig. 12) shows good agreement with Poisson statis-
tics up to an interval length of approximately 10; above
there it increasingly deviates from the result for Poisson
statistics.

We would expect Poisson statistics for a symmetrically

1.6
(0 ) -L
1.4
/S l‘_..
©° 1.2 4
2
T 1.0
2
S 0.8
&
~ 0.6
2
4 044
0.2 A o T T
0.0 T T — -
0 5 10 15 20 25
L (in units of the local mean spacing)
6 . . . . . . . .
5 B
£
©
2 4]
S
g
53
[
Q
L
~ 21
=
<
1 J
0 S ; e ——
0 10 20 30 40 50 60 70 80
L (in units of the local mean spocing)
FIG. 12. Spectral rigidity for the first 5120 eigenfrequen-

cies of the cylindrical cavity specified in the text. The dashed
line is a theoretical GOE prediction, whereas the dotted line
is Es(L) for the Poisson case.

shaped 2D microwave cavity due to the analogy with a
quantum billard whose classical analogue has regular dy-
namics. We see here that a spatially symmetric 3D mi-
crowave cavity gives us the same statistical results as in
a 2D cavity.

[1] M. C. Gutzwiller, Chaos in Classical and Quantum Me-
chanics (Springer-Verlag, New York, 1990), Chap. 16.

[2] M. L. Mehta, Random Matrices, 2nd ed. (Academic, New
York, 1990).

[3] R. U. Haq, A. Pandey, and O. Bohigas, Phys. Rev. Lett.
48, 1086 (1982); O. Bohigas, R. U. Haq, and A. Pandey,
ibid. 54, 1645 (1985).

[4] R. L. Weaver, J. Acoust. Soc. Am. 85, 1005 (1989).

[5] D. Wintgen and H. Friedrich, Phys. Rev. Lett. 57, 571
(1986).

[6] D. Delande and J. C. Gay, Phys. Rev. Lett. 57, 2006
(1986).

[7] A. Holle, G. Wiebusch, J. Main, B. Hager, H. Rottke, and
K. H. Welge, Phys. Rev. Lett. 56, 2594 (1986); J. Main,
G. Wiebusch, A. Holle, and K. H. Welge, ibid. 57, 2789
(1986).

[8] B. D. Simons et al., Phys. Rev. Lett. 71, 2899 (1993).

[9] W. Jans et al., J. Phys. A 26, 3187 (1993).

[10] M. V. Berry and M. Robnik, J. Phys. A 17, 2413 (1984).

[11] T. Prosen and M. Robnik, J. Phys. A 26, 2371 (1993).

[12] G. R. Welch et al., Phys. Rev. Lett. 62, 893 (1989).

[13] A. Kudrolli et al., Phys. Rev. E 49, R11 (1994).

[14] S. Sridhar, Phys. Rev. Lett. 67, 785 (1991).

[15] H.-J. Stéckmann and J. Stein, Phys. Rev. Lett. 64, 2215
(1990).

[16] H.-D. Graf et al., Phys. Rev. Lett. 69, 1296 (1992).

[17] M. Berry, in Chaos and Quantum Physics, edited by
M. Giannoni, A. Voros, and J. Zinn-Justin (Elsevier, Am-
sterdam, 1991), pp. 251-304.

[18] J. V. Jose, in New Directions in Chaos, edited by Hao
Baij-Lin (World Scientific, Singapore, 1990).

[19] In a related study, an experimental test of the theorem
of isospectral domains was carried out [S. Sridhar and
A. Kudrolli, Phys. Rev. Lett. 72, 2175 (1994)].

[20] R. Balian and C. Bloch, Ann. Phys. (N.Y.) 84, 559
(1974); Ann. Phys. (N.Y.) 64, 271(E) (1971).

[21] R. Balian and C. Bloch, Ann. Phys. (N.Y.) 60, 401
(1970).



52 STATISTICAL PROPERTIES OF THE EIGENFREQUENCY ... 1155

[22] M. Born and E. Wolf, Principles of Optics, 5th ed. (Perg-
amon, Oxford, 1975), Sec. 3.1.1.

[23] A. J. Lichtenberg and M. A. Lieberman, Regular and
Stochastic Motion (Springer-Verlag New York, 1983).

[24] R. P. Ratowsky, Ph.D. thesis, University of California at
Berkeley, 1988 (unpublished).

[25] M. Bartsch et al., Comput. Phys. Commun. 72, 22
(1992).

[26] We investigated two prismlike cavities and one double-
cone-like cavity, which we had solderd together of brass
sheets, all in different stages of deformation. In addition,
a commercially available toilet float ball made of copper
and deformed by us was investigated.

[27] T. A. Brody, Lett. Nuovo Cimento 7, 482 (1973).

[28] T. A. Brody et al., Rev. Mod. Phys. 53, 385 (1981).

[29] M. V. Berry and M. Tabor, Proc. R. Soc. London Ser. A
356, 375 (1977).

[30] F. Haake, Quantum Signatures of Chaos (Springer,
Berlin, 1991).

[31] M. V. Berry, Ann. Phys. (N.Y.) 131, 163 (1981).

[32] T. Ishikawa and T. Yukawa, Phys. Rev. Lett. 54, 1617
(1985).

[33] A. Shudo and Y. Shimizu, Phys. Rev. A 42, 6264 (1990).

[34] O. Bohigas et al., Phys. Rev. Lett. 52, 1 (1984).

[35] T. Yukawa and T. Ishikawa, Progr. Theor. Phys. Suppl.
98, 157 (1989).

[36] C. E. Porter, Statistical Theory of Spectra (Academic,
New York, 1965). :

[37] M. L. Mehta and J. Des Cloizeaux, Indian J. Math. 3,
329 (1971).

[38] B. Dietz and F. Haake, Z. Phys. B 80, 153 (1990).

[39] T. Prosen and M. Robnik, J. Phys. A 26, 1105 (1993).

[40] F. J. Dyson and M. L. Mehta, J. Math. Phys. 4, 701
(1963).

[41] H. Friedrich and D. Wintgen, Phys. Rep. 183, 37 (1989).

[42] G.R. Welch, M. M. Kash, C.-h. Iu, L. Hsu, and D. Klepp-
ner, Phys. Rev. Lett. 62, 893 (1989).

[43] G. Wunner, Phys. Bl 45, 139 (1989).

[44] Y. Chen et al., J. Opt. Soc. Am. B 7, 1805 (1990).



FIG. 5. Photograph of the cavity.



